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Abstract
We examine theoretically the structural behaviour of dilute solutions of
multiarm star polymers under the addition of smaller homopolymerchains. The
approach is based on effective interactions, for which the star-polymer centres
and the centres of mass of the linear chains are used as effective coordinates. We
find that addition of linear chains first leads to a softening of the star-polymer
repulsions and, at higher chain concentrations, to the formation of stable, multi-
star clusters. We accompany the theoretical approach with dynamical light
scattering measurements in real systems, finding agreement between theory
and experiment. We rationalize our findings by deriving the chain-induced,
one-component effective potential between stars, which features an attractive
well followed by a repulsive barrier. We discuss the dependence of these
characteristics on the size and concentration of the homopolymer additives and
relate the present system to recent models that also display cluster formation.

Star-shaped polymers [1, 2] have emerged as a well characterized, tunable and highly versatile
model colloidal system that displays very rich equilibrium and dynamical behaviour. The
physical parameter that determines the softness of these macromolecular aggregates is the
number f of polymer chains that are anchored on a common centre,also called the functionality
of the star. Focusing on the mesoscopic length scales, the fluctuating monomers of the f chains
in a concentrated star-polymer solution can be integrated out, leaving behind a collection of
‘effective point particles’ (the star centres) that interact by means of a monomer-mediated, soft
effective repulsion [3]. The versatility of star polymers arises physically from the influence
of the functionality f on the softness of this repulsion: it has been shown [4, 5] that it
depends logarithmically on the star–star separation for overlapping distances, crossing over
to an exponential decay for larger ones. The functionality influences both the overall strength
of the repulsion, in the form of a f 3/2-prefactor, and the decay length of the exponential tail,
which scales as σ f −1/2, with σ denoting the corona diameter of the star [5].

Whereas for sufficiently low functionalities, f � fc = 32, the star–star repulsion
is too weak to sustain stable crystals at arbitrary concentrations, for f > fc and above
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the stars’ overlap density stable bcc and fcc crystals are predicted to be the equilibrium
structures, accompanied by re-entrant melting and formation of open crystal structures at
even higher densities [6, 7]. The formation of ordered fcc and bcc crystals has recently
found experimental confirmation for various star-like systems stemming from self-organized
block copolymers [8–11]. Yet, for real star-polymer samples, the development of periodic
structures is usually hindered by glass formation, aided by the inherent polydispersity of the
solutions [12, 13]. A recent, mode-coupling analysis based on the effective interaction of [5]
has shown that the vitrification of star polymers can be understood along the same lines as
the dynamical arrest of a hard-sphere system, driven by the existence of a density-dependent,
effective hard-sphere diameter between the stars [14]. Accordingly, the observed melting of
the star-polymer glass upon addition of shorter homopolymer chains has been attributed to the
ability of the additives to bring about a softening of the star–star repulsion and a concomitant
reduction of the effective hard-sphere diameter between the same [15].

In this work, we keep our attention on star–chain mixtures but we turn our focus to
the regime of low or intermediate concentrations of the stars, i.e., far from their overlap
concentration and the associated crystallization or vitrification phenomena. We consider a
mixture of star polymers with functionality f , termed species 1, with smaller linear chains,
termed species 2. Following a coarse-graining procedure for both species, we describe
the stars by their centres and the chains by their centres of mass. With r denoting the
separation between any two such coordinates, the mesoscopic structure of the system can
then be determined by three effective interaction potentials vi j(r), i, j = 1, 2, together with
the physical characteristics of the system: the star functionality f and the chain-to-star size
ratio δ < 1, as well as the partial number densities ρi = Ni/�, where Ni denotes the number of
stars (i = 1) or chains (i = 2) enclosed in the macroscopic volume �. As we are dealing with
polymers in athermal solvents throughout, the temperature appears in all effective interactions
involved exclusively in the form of a prefactor kBT (with kB being Boltzmann’s constant), and
therefore plays no role in the structure of the system.

For the three effective interactions vi j (r), we adopt the same expressions as used in a
preceding study of the vitrification properties of star–chain mixtures by some of us [15]. The
star–star interaction, v11(r), is given by the logarithmic Yukawa potential of [5], featuring
a crossover from the logarithmic to the exponential form at the aforementioned length scale
σ . Extensive computer simulations have established the relation σ ∼= 1.2Rg [16] between
this length and the radius of gyration Rg of the stars. The chain–chain effective potential has
been derived in the work of Louis et al [17, 18]: v22(r) = 1.87 kBT exp[−(r/τ)2], where
τ = 1.13Rlin

g and Rlin
g is the linear chains’ gyration radius. Finally, a heuristic form for the

cross interaction, based on typical overlap energy estimates, has been adopted in [15], which
reads as v12(r) = 1.387 kBT (r/ξ)−12, with ξ = (σ + 2σ/

√
f + Rg)/2. The size asymmetry is

expressed through the ratio δ ≡ τ/σ < 1.
In order to determine the pair structure of the mixture we have solved the two-component

hypernetted chain (HNC) closure for given sets of physical parameters ( f, δ; ρ1, ρ2), deriving
thereby the radial distribution functions gi j(r) and the structure factors Si j (q). In order to
maintain contact with currently available experimental samples, we have considered three
different values of the star functionality f = 73, 122, and 270, as well as two different values
of the size ratio δ = 0.3 and 0.5. The density ρ1 was always kept within the dilute regime,
ρ1σ

3 � 1, whereas ρ2 was varied at will.
Selected results for the star–star structure factors S11(q) are shown in figure 1. Upon

the addition of a small number of chains, the star system displays weakened correlations, as
witnessed by the drop of the height of the main peak of S11(q) and the virtual disappearance
of the second one. However, as ρ2 further increases, a new feature shows up: the structure
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factor develops a double-peak structure with two peaks that correspond to two independent
length scales. Whereas a ‘particle peak’ shows up at q2σ

∼= 6, a ‘cluster peak’ appears at much
smaller wavenumbers, q1σ

∼= 2, the position of which changes with chain density. In fact,
as ρ2 grows, the latter peak moves to lower q-values, indicating the growth of the cluster size
(and the concomitant intercluster separation). Eventually, at sufficiently high chain densities,
the peak moves towards q = 0 and a spinodal line, S11(q = 0) → ∞, is reached. The double-
peak structure factor is strongly reminiscent of features present in model systems for which
the development of clusters has been detected, both in experiment [19] and in theory [20–24].
We will return to a comparison between our system and some of these models at the end of
this paper.

Comparing now the quantitative features of figures 1(a)–(c), we see that the occurrence
of a double peak (and thus of the clusters) takes place at lower chain densities for f = 73
than for f = 122, at fixed size ratio δ = 0.3. In fact, for star functionality f = 270, which
we also examined, we did not find any clustering phenomena. Moreover, the interparticle
distance within the clusters, rm, which is given roughly as rm

∼= 2π/q2, has a dependence
both on f and on δ. Comparing figures 1(a) and (b) we see that, for fixed δ, the particles
within the clusters come somewhat closer to each other as f increases. On the other hand, by
comparing the position of q2 between figures 1(b) and (c) we see that, for fixed f , an increase
in δ leads to a concomitant increase of the particle separation within the clusters, witnessed by
the significant shift of q2 to the left. Otherwise, the position of q2 is rather insensitive to the
value of the density ρ2 of the additives: clusters are formed and grow in size upon increasing
ρ2 but, otherwise, the particle–particle distance within a cluster is not influenced by the chain
concentration.

Figure 2 shows the evolution of the radial distribution function g11(r) of the stars upon
chain addition for the same parameter combination as in figure 1(b). The initial ‘softening’ of
the star–star repulsion and the subsequent accumulation of stars are witnessed by the ‘leaking
in’ of g11(r) and the development of an increasingly high peak at r � σ , respectively. Note
that, in agreement with the interpretation given above, the peak position is hardly affected by
ρ2; it corresponds to the length scale rm introduced above. On the other hand, the integral
below the peak, which gives the cluster size, does grow upon increase of ρ2.

We have also performed experiments employing mixtures of f = 122, regular 1,4-
polybutadiene stars with homopolymer chains of size ratio δ = 0.4. Dynamic light scattering
experiments yielded the intermediate scattering function C(q, t) which was analysed via an
inverse Laplace transform, determining the characteristic relaxation times through the peak
distribution of the same [25]. Such measurements allow for the independent determination
of both the hydrodynamic radius and the radius of gyration of the dissolved objects for any
given chain density. Indeed, the relaxation peaks resulting from the self-diffusion of the stars
(slow) and the collective diffusion of the chains (fast) are well separated in time, allowing
for the identification of two distinct relaxation processes in the system. Calling �(q) the
q-dependent inverse decay time associated with the stars, the self-diffusion coefficient Dstar

of the same was calculated as Dstar = �(q)/q2 and the Stokes–Einstein relation yielded the
star hydrodynamic radius. On the other hand, the integrated intensity under the peak gives
the static scattering intensity I (q) from the stars, allowing then for a determination of the
gyration radius Rg through a Guinier fit for the cluster-free case and by a Debye–Bueche fit in
the clustered phase [26].

Both methods yielded identical results regarding the dependence of the radii on ρ2. In
figure 3 we show the result for Rg. There is an initial shrinkage of the stars, caused by the
osmotic pressure of the chains and lasting up to a concentration clin/c∗

lin
∼= 0.4. Thereafter,

a rapid increase of Rg was measured with growing chain concentration, pointing to the
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Figure 1. Star–star structure factors S11(q) for star polymers at density ρ1σ
3 = 0.1 and chain

densities ρ2τ
3 as indicated in the legends, for different star functionalities f and chain-to-star size

ratios δ. (a) f = 73, δ = 0.3; (b) f = 122, δ = 0.3; (c) f = 122, δ = 0.5. The arrows in (a)
denote the cluster-peak position q1 and the particle-peak position q2 introduced in the text, whereas
the peak position q0 for the chain-free star solution is also marked for comparison.
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Figure 2. The star–star radial distribution function g11(r) at ρ1σ
3 = 0.1 and chain densities ρ2τ

3

as indicated in the legends. Here f = 122 and δ = 0.3.
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Figure 3. The ratio Rg/R0
g of the measured star radius of gyration over its value at zero chain

concentration in a dilute star solution containing linear chains, plotted against the concentration of
the latter. Here, clin denotes the weight fraction of linear chains with c∗

lin standing for the value of
this quantity at the chains’ overlap concentration. Inset: the measured scattering intensity at the
last (upper symbols, red) and fifth from last (lower symbols, blue) points of the main plot. Notice
the dramatic increase of the latter at low scattering wavevectors q at the red point, indicating the
presence of clusters in the system.

(This figure is in colour only in the electronic version)

development of clusters with Rg as large as 10 times the value of an isolated star. After a
period of several weeks, the clusters did not grow in size, suggesting their equilibrium nature.

The formation of clusters as well as the trends regarding their size and stability depending
on f and δ can be rationalized through the concept of the effective star–star interaction in the
presence of the chains, Veff(r; ρ2). This quantity is derived from the stars’ radial distribution
function g11(r) through Veff(r; ρ2) = − limρ1→0 ln g11(r; ρ1, ρ2) and includes all the effects
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Figure 4. The chain-induced star–star effective interaction Veff(r; ρ2) for various chain densities,
as indicated in the legends. (a) f = 73; (b) f = 122. The size ratios δ are also shown in the
legends.

from the chains through its dependence on the chain density ρ2. In the absence of chains, we
have Veff(r; ρ2 → 0) = V11(r). In figure 4 we show characteristic results for this quantity
for different values of f , δ and ρ2. Whereas for small values of ρ2 the effect of the chains
is just a reduction of the repulsion strength of the interaction, upon sufficient increase of ρ2

a ‘well-and-shoulder’ form of the effective interaction arises. The attractive well is a typical
depletion effect and is caused by the osmotic pressure of the chains surrounding two stars that
are sufficiently close to each other, so that polymer chains are excluded from the interstar space.
The repulsive shoulder is a feature arising from the chain interactions and correlations, as the
latter become crowded in the interstar region for larger interstar distances, a phenomenon also
known from asymmetric hard sphere mixtures [27].

Cluster formation has been recently observed in protein solutions and charged colloid–
polymer mixtures [19]; their stability was attributed to the presence of an effective potential
with a short-range attraction and a long-range repulsion. The presence of both an attractive well
and a repulsive shoulder is indispensable for the formation of finite, stable clusters. Indeed,
in a number of recent works effective potentials of this kind have been employed in order to
explain the emergence of mesoscopic structures (clusters or stripes) in soft matter. Sear and
Gelbart worked with a hard-sphere potential, dressed by the superposition of two ‘Kac-tail’,
long-range interactions, one attractive, causing the well, and one repulsive, giving rise to the
shoulder [20]. Sciortino et al introduced an effective potential consisting of a superposition
of a generalized n–2n Lennard-Jones potential and a long-range Yukawa repulsion [21, 22],
finding the formation of spherical or linear clusters, depending on parameter values. Liu et al
investigated the structural properties of double Yukawa (attractive/repulsive) fluids, finding
macrophase separation or cluster formation, depending on the relative strength of the attractive
and repulsive parts [23], whereas Imperio and Reatto employed a model similar to that of [20]
and discovered cluster and stripe formation in two dimensions [24]. The physics behind the
cluster stability lies in the tendency of the attractive well to cause particle aggregates, whose
size is thereafter limited by the repulsive barrier that prevents the growth of an infinite cluster.
In this respect, the particle separation within the clusters, rm, is set by the minimum in the
effective potential Veff(r; ρ2). This explains the observation that q2 decreases (rm grows) as
δ increases; compare figure 4(b) with figures 1(a) and (b). Moreover, the fact that cluster
formation is easier at fixed ρ2 for smaller δ can be understood if one takes into account that, for
given ρ2τ

3, the number density of the small stars is larger for smaller δ, i.e., ρ2σ
3 = ρ2τ

3/δ3.
Hence, the smaller-δ chains can bring about a higher osmotic pressure that leads to cluster
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formation. Without the barrier, the system would be driven to phase separation without the
occurrence of clusters, i.e., S11(q) would develop a peak at q = 0 and not at finite q-values [20].
Note, however, that the presence of clusters does not exclude macroscopic phase separation.
Whereas one can choose the potential parameters in such a way that a binodal is completely
eliminated or strongly suppressed [20–22], one can have situations in which a binodal line is
preceded by a region of stability of finite clusters, as found by Liu et al in their study of the
double-Yukawa system [23]. Here, we find a similar scenario, in which cluster formation is
followed by indications of a macroscopic phase separation, i.e., star–chain demixing,witnessed
by the drifting of the cluster peak towards q = 0 as ρ2 is increased. Due to lack of experimental
samples, the chain concentration could not be increased beyond the values quoted here. On
the basis of the theoretical analysis, a macrophase separation is expected upon further increase
of ρ2. The investigation of this question, both theoretically and experimentally, will be the
subject of future work, along with related questions on the influence of the added chains on
the gelation and vitrification properties of the stars.
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